Abstract
In autoimmune type 1 diabetes, Fas-to-Fas-ligand (FasL) interaction may represent one of the essential pro-apoptotic pathways leading to a loss of pancreatic beta-cells. In the advanced stages of type 2 diabetes, a decline in beta-cell mass is also observed, but its mechanism is not known. Human islets normally express FasL but not the Fas receptor. We observed upregulation of Fas in beta-cells of type 2 diabetic patients relative to nondiabetic control subjects. In vitro exposure of islets from nondiabetic organ donors to high glucose levels induced Fas expression, caspase-8 and -3 activation, and beta-cell apoptosis. The effect of glucose was blocked by an antagonistic anti-Fas antibody, indicating that glucose-induced apoptosis is due to interaction between the constitutively expressed FasL and the upregulated Fas. These results support a new role for glucose in regulating Fas expression in human beta-cells. Upregulation of the Fas receptor by elevated glucose levels may contribute to beta-cell destruction by the constitutively expressed FasL independent of an autoimmune reaction, thus providing a link between type 1 and type 2 diabetes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.