Abstract
The development of mammalian nonalcoholic fatty liver disease is associated with oxidative stress, reduced mitochondrial function, and increased apoptosis in hepatocytes; however, the expressions of mitochondria-related genes are elevated in goose fatty liver, suggesting that there may be a unique protective mechanism in goose fatty liver. The aim of the study was to investigate this protective mechanism in terms of anti-oxidant capacity. Our data showed no substantial differences in the mRNA expression levels of the apoptosis-related genes including B-cell lymphoma-2 (Bcl-2), BCL2-associated X (Bax), cysteinyl aspartate-specific proteinase-3 (Caspase-3), and cysteinyl aspartate-specific proteinase-9 (Caspase-9) in the livers of the control and overfeeding Lander geese groups. The protein expression levels of Caspase-3 and cleaved Caspase-9 were not markedly different between the groups. Compared with the control group, malondialdehyde content was significantly lower (P < 0.01), glutathione peroxidase (GSH-Px) activity, glutathione (GSH) content, and mitochondrial membrane potential levels were higher (P < 0.01) in the overfeeding group. The mRNA expression levels of the anti-oxidant genes superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1), and glutathione peroxidase 2 (GPX2) were increased in goose primary hepatocytes after 40 mM and 60 mM glucose treatment. Reactive oxygen species (ROS) levels were significantly reduced (P < 0.01), whereas the mitochondrial membrane potential was maintained at normal levels. The mRNA expression levels of the apoptosis-related genes Bcl-2, Bax, and Caspase-3 were not substantial. There were no significant differences in the expression levels of Caspase-3 and cleaved Caspase-9 proteins. In conclusion, glucose-induced enhanced anti-oxidant capacity may help protect the function of mitochondria and inhibit the occurrence of apoptosis in goose fatty liver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.