Abstract

The silica hydrogels prepared at physiological conditions were characterized with respect to the glucose diffusion properties and the porosity by employing various approaches. A diffusion coefficient of glucose in silica hydrogel in the range of 2 × 10 −10 m 2 s −1 was determined by two complementary techniques based on the glucose ingress and egress, respectively. The confocal laser scanning microscopy in a time-lapse imaging mode was employed to measure the ingress of fluorescently labeled glucose analogue inside the hydrogel. In addition, a method for direct glucose release from the hydrogel was established. The simple diffusion model based on the Fickian diffusion and Ritger–Peppas theory were employed for evaluation of diffusion coefficients, respectively. The BET analysis and permeation of fluorescently labeled dextrans of various molecular weights were used to characterize the porosity of silica hydrogel. The radius of pores accessible for diffusion of dextran molecules in prepared silica hydrogel ranges between 1 and 6 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.