Abstract

ZnO nanowires were grown on Ag wire with a diameter of ~250 mum and used in an electrochemical sensor. The enzyme glucose oxidase (GOD) was immobilized on the ZnO nanowires, and the Ag wire was connected directly to the gate of a MOSFET. Upon exposure to glucose (1- 100 muM), the electrochemical response from the GOD induced a stable measurable voltage change on the gate leading to a strong modulation of the current through the MOSFET. For a sensor with uniform ZnO nanowires functionalized with GOD, a fast response time of less than 100 ms was demonstrated. The effect of the uniformity of the ZnO nanowires on the sensing property was also investigated. The extended-gate arrangement facilitated glucose detection in small sample volumes, and made it possible to demonstrate the present sensor concept using a standard low-threshold MOSFET. The extended-gate MOSFET sensor approach demonstrates the possibility and potential of the use of nanostructures coupled to standard electronic components for biosensing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call