Abstract

Signaling through mammalian target of rapamycin (mTOR) has been shown to play a central role in the regulation of skeletal muscle growth induced by a wide range of stimuli either mechanical or metabolic, such as growth factors and amino acids. Here, we demonstrate that mTOR and its downstream target, the ribosomal S6 kinase (p70(S6K)), are activated in L6 myocytes by a short-term glucose deprivation. Such response is specific of skeletal muscle and is likely responsible for the increased rate of protein synthesis and expression of the muscle-specific proteins during recovery from glucose deprivation. Nitric oxide and phosphatidylinositol-3-kinase (PI3K) are upstream positive regulators of mTOR since their pharmacological inhibition prevents the activation of p70(S6K) in response to glucose deprivation. We therefore propose a model of response to a brief period of glucose deprivation that may occur in skeletal muscle cells during resistance exercise and that may lead to protein accretion when blood flow recovers and all nutrients are again available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.