Abstract

Background and purposeThe incretin hormone, gastric inhibitory peptide/glucose‐dependent insulinotropic polypeptide (GIP), secreted by the enteroendocrine K‐cells in the proximal intestine, may regulate lipid metabolism and adiposity, but its exact role in these processes is unclear.Experimental approachWe characterized in vitro and in vivo antagonistic properties of a novel GIP analogue, mGIPAnt‐1. We further assessed the in vivo pharmacokinetic profile of this antagonist, as well as its ability to affect high‐fat diet (HFD)‐induced body weight gain in ovariectomised mice during an 8‐week treatment period.Key resultsmGIPAnt‐1 showed competitive antagonistic properties to the GIP receptor in vitro as it inhibited GIP‐induced cAMP accumulation in COS‐7 cells. Furthermore, mGIPAnt‐1 was capable of inhibiting GIP‐induced glucoregulatory and insulinotropic effects in vivo and has a favourable pharmacokinetic profile with a half‐life of 7.2 h in C57Bl6 female mice. Finally, sub‐chronic treatment with mGIPAnt‐1 in ovariectomised HFD mice resulted in a reduction of body weight and fat mass.Conclusion and ImplicationsmGIPAnt‐1 successfully inhibited acute GIP‐induced effects in vitro and in vivo and sub‐chronically induces resistance to HFD‐induced weight gain in ovariectomised mice. Our results support the development of GIP antagonists for the therapy of obesity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.