Abstract

In spring, the lowest temperature during freezing that can be survived by wood frogs (Rana sylvatica) from southern Ohio is approximately -3 degrees C. We investigated whether the thermal limit of freeze tolerance in these frogs is regulated by tissue levels of glucose, a putative cryoprotectant that is distributed to tissues during freezing. Frogs receiving exogenous glucose injections prior to freezing showed dose-dependent increases in glucose within the heart, liver, skeletal muscle and blood. Tissue glucose concentrations were further elevated during freezing by the production of endogenous glucose. Most glucose-loaded frogs survived freezing to -5 degrees C, whereas all control (saline-injected) frogs succumbed. Further, we investigated some mechanisms by which glucose might function as a cryoprotectant in R. sylvatica. Organ dehydration, a normal, beneficial response that reduces freezing injury to tissues, occurred independently of tissue glucose concentrations. However, elevated glucose levels reduced both body ice content and in vivo erythrocyte injury. These results not only provided conclusive evidence for glucose's cryoprotective role in R. sylvatica, but also revealed that tissue glucose level is a critical determinant of freeze tolerance capacity in this species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call