Abstract
This study examines how FOF1-ATPase, hydrogenases (Hyd-1 and Hyd-2), and potassium transport systems (TrkA) interact to maintain the proton motive force (pmf) in E. coli during fermentation of different glucose concentrations (2 g L−1 and 8 g L−1). Our findings indicate that mutants lacking the hyaA-hyaC genes exhibited a 30 % increase in total proton flux compared to the wild type when grown with 2 g L−1 glucose. This has been observed during assays where similar glucose levels were supplemented. Disruptions in proton pumping, particularly in hyaB and hyaC single mutants, led to increased potassium uptake. The hyaB mutant showed a threefold increase in the contribution of FOF1-ATPase to proton flux, suggesting a significant role for Hyd-1 in proton translocation. In the hybC mutant grown in 2 g L−1 glucose conditions, DCCD-sensitive fluxes decreased by 70 %, indicating critical role of Hyd-2 in proton transport and FOF1 function. When cells were grown with 8 g L−1 glucose, the 2H+/1K+ ratio was significantly disturbed in both wild type and mutants. Despite these perturbances, mutants with disruptions in Hyd-1 and Hyd-2 maintained constant FOF1 function, suggesting that this enzyme remains stable in glucose-rich environments. These results provide valuable insights into how Hyd-1 and Hyd-2 contribute to the regulation of ion transport, particularly proton translocation, in response to glucose concentration. Our study uncovered potential complementary mechanisms between Hyd-1 and Hyd-2 subunits, suggesting a complex interplay between these enzymes via metabolic cross talk with FOF1 in response to glucose concentrations to maintain pmf.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.