Abstract

The present study reports a surprising protein-condensing effect of glucose, prompted by our accidental observation during chemical library screening under a high-glucose condition. We noticed "glucosing-out" of certain compounds, in which physiological concentrations of glucose induced compound aggregation. Adapting the "glucosing-out" concept to proteins, our proteomic analysis identified three cellular proteins (calmodulin, rho guanine nucleotide exchange factor 40, and polyubiquitin-C) that displayed robust glucose-dependent precipitation. One of these proteins, calmodulin, formed glucose-dependent condensates that control cellular glycogenolysis in hepatic cells. Our findings suggest that glucose is a heretofore underappreciated driver of protein phase separation that may have profound effects on cellular homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.