Abstract
Culture of the postimplantation rat conceptus from gestational day 9.5-10.5 in media supplemented with d-glucose or scyllo-inositol decreases tissue myo-inositol and phosphoinositides with a concomitant increase in dysmorphogenesis. A number of mitogenic agents initiate cellular proliferation and differentiation through receptors coupled to phosphoinositide hydrolysis. To test whether the decrease in conceptus phosphoinositides is associated with a reduced phosphoinositide hydrolytic response, we developed a protocol to stimulate phosphoinositide hydrolysis. Phosphoinositide hydrolysis was monitored by measurement of [3H]inositol phosphates after preincubation in serum free media. We examined the ability of serum, platelet-derived growth factor (PDGF), epidermal-derived growth factor (EGF), insulin-like growth factor 1 (IGF-1), insulin-like growth factor 2 (IGF-2), endothelin-1 (ET-1), and endothelin-2 (ET-2), to stimulate phosphoinositide hydrolysis. As measured by [3H]inositol monophosphate ([3H]InsP1) accumulation, normal rat seru, ET-1, and ET-2 stimulated phosphoinositide hydrolysis 47%, 420%, and 154% above the basal rate observed in serum free controls. EGF stimulated a statistically insignificant 15% increase while PDGF, IGF-1, or IGF-2 were without effect. We further characterized ET-1 stimulated phosphoinositide hydrolysis. Dose-response studies disclosed that incremental increases in [3H]InsP1 (129-420%) are observed over a concentration range of 10-1,000 nM. Maximal stimulation was not reached even at 1,000 nM. Temporally [3H]InsP1 and [3H]InsP3 levels increased linearly during incubation periods of 15-60 min. We further analyzed ET-1 stimulated phosphoinositide hydrolysis in 10.5-day conceptuses cultured for 24 hr in media containing high concentrations of glucose (23.3-56.6 mM) or scyllo-inositol (0.55, 5.5 mM). Under these dysmorphogenic conditions that concomitantly decrease the phosphoinositide precursor pool the response to ET-1 was blunted 28-76% for glucose and 29-65% for scyllo-inositol. This suggests that the effect of glucose and scyllo-inositol on lowering phosphoinositide precursor pools also results in a decrease in the response to agonists using the inositol/lipid intracellular pathway. This impaired signaling response may contribute to initiating dysmorphogenic events in diabetic embryopathy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.