Abstract

Stimuli-responsive devices that deliver drugs or imaging contrast agents in spatial-, temporal- and dosage-controlled fashions have emerged as the most promising and valuable platform for targeted and controlled drug delivery. However, implementing high performance of these functions in one single delivery carrier remains extremely challenging. Herein, we have developed a sequential strategy for developing glucose and magnetic-responsive microvesicle delivery system, which regulates the glucose levels and spatiotemporally controls the generation of nitric oxide gas free bubbles. It is observed that such injectable microvesicles loaded with enzyme and magnetic nanoparticles can firstly regulate hyperglycemic level based on the enzymatic reactions between glucose oxidase and glucose. In a sequential manner, concomitant magnetic field stimuli enhance the shell permeability while prompts the reaction between H2O2 and l-arginine to generate the gasotransmitters nitric oxide, which can be imaged by ultrasound and further delivered for diabetic nephropathy therapy. Therefore, magnetic microvesicles with glucose oxidase may be designed as a novel theranostic approach for restoring glucose homeostasis and spatiotemporally control NO release for maintaining good overall diabetic health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.