Abstract

In our present study, the composites of molybdenum disulfide/carbon nanotubes (MoS2/CNTs) were synthesized with glucose aided (G-A) by using an in situ hydrothermal route, and proposed as counter electrode (CE) catalyst in the dye-sensitized solar cells (DSSCs) for enhancing electrocatalytic activity toward the reduction of triiodide. The MoS2/CNTs composites with tentacle-like structure were confirmed by using the scanning and transmission electron microscopy. The superior structural characteristics including large active surface area and particularly the unique tentacle-like nanostructure along with 3D large interconnected interstitial volume guaranteed fast mass transport for the electrolyte, and enabled the (G-A) MoS2/CNTs CE to speed up the reduction of triiodide to iodide. The extensive electrochemical studies by the cyclic voltammetry, electrochemical impedence spectroscopy and Tafel measurements indicated that the (G-A) MoS2/CNTs CE possessed superior electrocatalytic activity, great electrochemical stability and impressive low charge transfer resistance on the electrolyte|electrode interface (1.77Ωcm2) in the triiodide/iodide system compared to the pristine MoS2, MoS2/C and sputtered Pt CEs. The DSSC assembled with the novel (G-A) MoS2/CNTs CE exhibited high power conversion efficiency of 7.92% under the illumination of 100mWcm−2, comparable to that of the DSSC with the Pt electrode (7.11%).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.