Abstract

Two different forms of glucose 6-phosphate dehydrogenase (EC 1.1.1.49) have been purified from etiolated and green leaves, respectively, of 6-day maize (Zea mays L. cv Fronica) seedlings. The procedure includes an ammonium sulfate step, an ion exchange chromatography, and a second gel filtration in Sephadex G-200 in the presence of NADP(+) to take advantage of the corresponding molecular weight increase of the enzyme. The isozyme from etiolated leaves is more stable and has been purified up to 200-fold. Subunit molecular weight, measured by sodium dodecyl sulfate-gel electrophoresis, is 54,000. The active protein, under most conditions, has a molecular weight 114,000, which doubles to molecular weight 209,000 in the presence of NADP(+). The association behavior of enzyme from green leaves is similar, and the molecular weight of the catalytically active protein is also similar to the form of etiolated leaves.Glucose 6-phosphate dehydrogenase of dark-grown maize leaves isoelectric point (pI) 4.3 is replaced by a form with pI 4.9 during greening. The isozymes show some differences in their kinetic properties, K(m) of NADP(+) being 2.5-fold higher for pI 4.3 form. Free ATP (K(m) = 0.64 millimolar) and ADP (K(m) = 1.13 millimolar) act as competitive inhibitors with respect to NADP(+) in pI 4.3 isozyme, and both behave as less effective inhibitors with pI 4.9 isozyme. Magnesium ions abolish the inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.