Abstract

Variations in the cellular microenvironment affect the host's susceptibility to pathogens. Using glucose-6-phosphate dehydrogenase (G6PD)-deficient fibroblasts as a model, this study demonstrated that the cellular redox status affects infectivity as well as the outcome of enterovirus 71 (EV71) infection. Compared with their normal counterparts, G6PD-deficient cells supported EV71 replication more efficiently and showed greater cytopathic effect and loss of viability. Mechanistically, viral infection led to increased oxidative stress, as indicated by increased dichlorofluorescein fluorescence and a diminished ratio of glutathione (GSH) to its disulfide form (GSSG), with the effect being greater in G6PD-deficient cells. Exogenous expression of active G6PD in the deficient cells, which increased the intracellular GSH:GSSG ratio, suppressed the generation of viral progeny. Consistent with this, treatment with N-acetylcysteine offered resistance to EV71 propagation and a cytoprotective effect on the infected cells. These findings support the notion that G6PD status, and thus redox balance, is an important determinant of enteroviral infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.