Abstract

Aspergillus terreus produces itaconic acid at low pH but lovastatin and other secondary metabolites at higher pH in the fermentation. The utilization of glucose as a carbon substrate was investigated for secondary metabolite production by A. terreus. With a starting pH of 6.5, glucose was rapidly metabolized to gluconic acid by the wild-type strain and by transformants harbouring Aspergillus niger genes encoding 6-phosphofructo-1-kinases with superior kinetic and regulatory properties for bioproduction of metabolites from glucose. On exhaustion of the glucose in batch fermentations, the accumulated gluconic acid was utilized as a carbon source. A novel pathway of glucose catabolism was demonstrated in A. terreus, a species whose wild type is, without any strain development, capable of producing gluconic acid at high molar conversion efficiency (up to 0.7 mol mol(-1) glucose consumed). Aspergillus terreus is a potential novel producer organism for gluconic acid, a compound with many uses as a bulk chemical. With a new knowledge of glucose catabolism by A. terreus, fermentation strategies for secondary metabolite production can be devised with glucose feeding using feedback regulation by pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.