Abstract

Airway remodeling, including increased airway smooth muscle (ASM) mass and contractility, contributes to increased airway narrowing in asthma. Increased ASM mass may be caused by exposure to mitogens, including platelet-derived growth factor (PDGF) and collagen type I, which induce a proliferative, hypocontractile ASM phenotype. In contrast, prolonged exposure to insulin induces a hypercontractile phenotype. Glucocorticosteroids and β₂-adrenoceptor agonists synergize to increase glucocorticosteroid receptor translocation in ASM cells; however, the impact of this synergism on phenotype modulation is unknown. Using bovine tracheal smooth muscle, we investigated the effects of the glucocorticosteroids fluticasone (10 nM), budesonide (30 nM), and dexamethasone (0.1-1 μM) and the combination of low concentrations of fluticasone (3-100 pM) and fenoterol (10 nM) on ASM phenotype switching in response to PDGF (10 ng/ml), collagen type I (50 μg/ml), and insulin (1 μM). All glucocorticosteroids inhibited PDGF- and collagen I-induced proliferation and hypocontractility, with the effects of collagen I being less susceptible to glucocorticosteroid action. At 100-fold lower concentrations, fluticasone (100 pM) synergized with fenoterol to prevent PDGF- and collagen I-induced phenotype switching. This inhibition of ASM phenotype switching was associated with a normalization of the PDGF-induced decrease in the cell cycle inhibitors p21(WAF1/CIP1) and p57(KIP2). At this concentration, fluticasone also prevented the insulin-induced hypercontractile phenotype. At even lower concentrations, fluticasone (3 pM) synergized with fenoterol to inhibit this phenotype switch. Collectively, these findings indicate that glucocorticosteroids and β₂-agonists synergistically inhibit ASM phenotype switching, which may contribute to the increased effectiveness of combined treatment with glucocorticosteroids and β₂-agonists in asthma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.