Abstract
The present study describes glucocorticoid induced remodelling of nuclear envelope (NE) structure and permeability. A glucocorticoid analogue, triamcinolone acetonide (TA), is injected into Xenopus laevis oocytes that express an exogeneous glucocorticoid receptor (GR). Electrical, fluorescence and nano-imaging techniques are applied to study the permeability and the structure of the NE at 5 and 60 minutes after injection of TA. A remarkable dilation of nuclear pore complexes (NPCs), a rearrangement of NPC distribution and a significant increase of NE permeability for ions and fluorescent 20 kDa dextran are observed within 5 minutes of TA exposure. At regular distances on local NE patches, NPCs seem to adjoin forming clusters each consisting of several hundred NPCs. Interestingly, at the same time of exposure, hydrophobicity of NPC central channels and NPC-free NE surface increases. The changes in permeability and structure are transient as the NE permeability returns to its initial state within 60 minutes. In conclusion, the NE is a barrier of high plasticity sensitive to hydrophobic molecules. Remodelling of NE structure and permeability is a prerequisite for mediating physiological actions of glucocorticoids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.