Abstract
G protein-coupled receptors (GPCRs) compose the largest family of cell surface receptors and are the most common target of therapeutic drugs. The nonvisual arrestins, β-arrestin-1 and β-arrestin-2, are multifunctional scaffolding proteins that play critical roles in GPCR signaling. On binding of activated GPCRs at the plasma membrane, β-arrestins terminate G protein-dependent responses (desensitization) and stimulate β-arrestin-dependent signaling pathways. Alterations in the cellular complement of β-arrestin-1 and β-arrestin-2 occur in many human diseases, and their genetic ablation in mice has severe consequences. Surprisingly, however, the factors that control β-arrestin gene expression are poorly understood. We demonstrate that glucocorticoids differentially regulate β-arrestin-1 and β-arrestin-2 gene expression in multiple cell types. Glucocorticoids act via the glucocorticoid receptor (GR) to induce the synthesis of β-arrestin-1 and repress the expression of β-arrestin-2. Glucocorticoid-dependent regulation involves the recruitment of ligand-activated glucocorticoid receptors to conserved and functional glucocorticoid response elements in intron-1 of the β-arrestin-1 gene and intron-11 of the β-arrestin-2 gene. In human lung adenocarcinoma cells, the increased expression of β-arrestin-1 after glucocorticoid treatment impairs G protein-dependent activation of inositol phosphate signaling while enhancing β-arrestin-1-dependent stimulation of the MAPK pathway by protease activated receptor 1. These studies demonstrate that glucocorticoids redirect the signaling profile of GPCRs via alterations in β-arrestin gene expression, revealing a paradigm for cross-talk between nuclear and cell surface receptors and a mechanism by which glucocorticoids alter the clinical efficacy of GPCR-based drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.