Abstract
Glucocorticoids modulate immune development and function through the induction of lymphocyte apoptosis via mechanisms requiring alterations in gene expression. Recently, short, noncoding, microRNAs have been identified as key regulators of lymphocyte function; however, it is unknown whether glucocorticoids regulate noncoding microRNAs and whether this regulation contributes to lymphocyte apoptosis. We now show by both microarray and deep sequencing analysis that microRNAs are substantially repressed during glucocorticoid-induced apoptosis of primary rat thymocytes. Mechanistic studies revealed that primary microRNA transcripts were not repressed, whereas the expression of the key microRNA processing enzymes: Dicer, Drosha, and DGCR8/Pasha, were significantly reduced at both the mRNA and protein levels during glucocorticoid-induced apoptosis. To delineate the role of Dicer depletion and microRNA repression in apoptosis, we silenced Dicer expression in two human leukemic cell lines and demonstrated that Dicer depletion significantly enhanced glucocorticoid-induced apoptosis in both model systems. Finally, in vitro and in vivo overexpression of the conserved miR-17-92 polycistron, which was repressed significantly by dexamethasone treatment in both our microarray and deep sequencing studies, blunted glucocorticoid-induced apoptosis. These studies provide evidence of altered post-transcriptional microRNA expression and the repression of the microRNA bioprocessing pathway during glucocorticoid-induced apoptosis of lymphocytes, suggesting a role for microRNA processors and specific microRNAs in cell life/death decisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.