Abstract

Lipopolysaccharides (LPS) can lead to a lethal endotoxemia, which is a systemic inflammatory response syndrome (SIRS) characterized by a systemic release of cytokines, such as TNF. Endotoxemia is studied intensely, as a model system of Gram-negative infections. LPS- and TNF-induced SIRS involve a strong induction of interferon-stimulated genes (ISGs), some of which cause cell death in the intestinal epithelium cells (IECs). It is well known that glucocorticoids (GCs) protect against endotoxemia. By applying numerous mutant mouse lines, our data support a model whereby GCs, via their glucocorticoid receptor (GR), apply two key mechanisms to control endotoxemia, (i) at the level of suppression of TNF production in a GR monomer-dependent way in macrophages and (ii) at the level of inhibition of TNFR1-induced ISG gene expression and necroptotic cell death mediators in IECs in a GR dimer-dependent way. Our data add new important insights to the understanding of the role of TNF in endotoxemia and the two separate key roles of GCs in suppressing TNF production and activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call