Abstract
Innate lymphoid cells (ILCs) comprise cytotoxic natural killer (NK) cells and helper ILCs (hILCs). Human hILC development is less characterized as compared with that of NK cells, although all ILCs are developmentally related. It has been reported that the immunosuppressive drugs glucocorticoids (GCs) regulate ILC function, but whether they control ILC differentiation from hematopoietic stem cells (HSCs) is unknown. This study sought to analyze the effect of GCs on ILC development from HSCs. This study exploited an invitro system to generate and expand from peripheral blood HSCs a multipotent CD56+ ILC precursor able to differentiate into NK cells, ILC1s, and ILC3s. We also analyzed exvivo, at different time points, the peripheral blood of recipients of allogeneic HSC transplantation who were or were not treated with GCs and compared ILC subset reconstitution. Invitro, GCs favor the generation of NK cells from myeloid precursors, while they strongly impair lymphoid development. In support of these data, recipients of HSC transplantation who had been treated with GCs display a lower number of circulating hILCs, including the ILC precursor (ILCP) previously identified as a systemic substrate for tissue ILC differentiation. GCs impair the development of the CD117+ ILCP from CD34+ HSCs, while they do not affect the further steps of ILCP differentiation toward NK cells and hILC subsets. This reflects an association of GC treatment with a marked reduction of circulating hILCs in the recipients of HSC transplantation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.