Abstract

The effect of dexamethasone on the expression of proteolipid protein (PLP) and myelin-associated glycoprotein (MAG) genes was investigated in rat C6 glioma cells. The steady state level of the respective mRNAs was quantitated by Northern blot analysis. The treatment of cells with dexamethasone transiently upregulated the expression of both genes with peak mRNA levels of approximately 10-fold over control levels occurring at day 3 for the PLP gene and at day 5 for the MAG gene. The effect was directly related to the drug concentration in the range from 10(-9) to 10(-5) M. Combined exposure of the cells to dexamethasone and retinoic acid featured an additive effect on PLP gene expression, whereas MAG gene expression was depressed below detectability level. The dissimilarity in the response of the genes to dexamethasone and retinoic acid supports the contention that the genes are controlled by different mechanisms. Furthermore, the results indicate that the effects of dexamethasone and retinoic acid on the myelin genes are mediated by different regulatory pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.