Abstract

In the brain, a 36-kb distal promoter (I.f) regulates the Cyp19a1 gene that encodes aromatase, the key enzyme for estrogen biosynthesis. Local estrogen production in the brain regulates critical functions such as gonadotropin secretion and sexual behavior. The mechanisms that control brain aromatase production are not well understood. Here we show that the glucocorticoid dexamethasone robustly increases aromatase mRNA and protein by up to 98-fold in mouse hypothalamic cell lines in a dose- and time-dependent fashion. Using deletion mutants of the brain-specific promoter I.f and chromatin immunoprecipitation-PCR, we isolated a distinct region (−500/−200bp) which becomes enriched in bound glucocorticoid receptor upon dexamethasone stimulation. A glucocorticoid antagonist or siRNA based knockdown of glucocorticoid receptor ablated dexamethasone stimulation of aromatase expression. Our findings demonstrate how glucocorticoids alter aromatase expression in the hypothalamus and might indicate a mechanism whereby glucocorticoid action modifies gonadotropin pulses and the menstrual cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.