Abstract
Experimental observations indicate that tissue macrophages deployed in great numbers at critical anatomic sites such as the liver, spleen, and lung are major targets for glucocorticoids compromising natural resistance of the host. Therapeutic concentrations of glucocorticoids appear to prevent destruction of microorganisms ingested by macrophages without interfering with phagocytosis, phagolysosomal fusion, and/or secretion of reactive oxygen intermediates. These findings indicate that at the cellular level the glucocorticoid target should be sought for in the nonoxidative armature of the phagocyte and that nonoxidative killing systems of resident tissue macrophages play an important role in natural resistance to opportunistic pathogens. Glucocorticoids do not prevent lymphokine-induced activation of oxidative killing systems. Thus, lymphokines such as interferon-gamma can restore the microbicidal activity of macrophages functionally impaired by glucocorticoids. Counterbalance of the suppressive effect of glucocorticoids by lymphokines might only be possible, however, for pathogens susceptible to oxidative killing and not for microorganisms that are more resistant to reactive oxygen intermediates such as Aspergillus spores and Nocardia, opportunists that appear to be particularly associated with hypercortisolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.