Abstract
Although several studies have shown that glucocorticoids exert diuretic effects in animals and humans, the underlying mechanism responsible for the acute diuretic effect remains obscure. Here we examined the mechanism in terms of gene-expression. We observed that glucocorticoids, including dexamethasone (Dex) and prednisolone (PSL), acutely induced diuresis in rats in a dose-dependent manner. Free water clearance values were negative after Dex or PSL treatment, similar to those observed after treatment with osmotic diuretics (furosemide and acetazolamide). Dex significantly increased the urinary excretion of sodium, potassium, chloride, glucose, and inorganic phosphorus. Renal microarray analysis revealed that Dex significantly altered the renal expression of genes related to transmembrane transport activity. The mRNA levels of sodium/phosphate (NaPi-2a/Slc34a1, NaPi-2b/Slc34a2, and NaPi-2c/Slc34a3) and sodium/glucose cotransporters (Sglt2/Slc5a2) were significantly reduced in the Dex-treated kidney, being negatively correlated with the urinary excretion of their corresponding solutes. Dex did not affect renal expression of the natriuretic peptide receptor 1 (Npr1) gene, or the expression, localization, and phosphorylation of aquaporin-2 (AQP2), a water channel protein. These findings suggest that the acute diuretic effects of glucocorticoids might be mediated by reduced expression of sodium-dependent cotransporter genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.