Abstract

The Notch signaling pathway modulates cell fate in diverse contexts, including vascular development. Notch4 is selectively expressed in vascular endothelium and regulates vascular remodeling. The signal-dependent transcription factor activator protein 1 (AP-1) activates Notch4 transcription in endothelial cells, but other factors/signals that regulate Notch4 are largely unknown. We demonstrate that, unlike the established transrepression mechanism in which the glucocorticoid receptor (GR) antagonizes AP-1, AP-1 and GR synergistically activated Notch4 transcription in endothelial cells. Fibroblast growth factor 2 (FGF-2) and cortisol induced AP-1 and GR occupancy, respectively, at a Notch4 promoter composite response element consisting of an imperfect half-glucocorticoid response element and an AP-1 motif, which mediated signal-dependent activation. Analysis of Notch4 promoter complex assembly provided evidence that GR and AP-1 independently occupy the composite response element, but AP-1 stabilizes GR occupancy. In multipotent 10T1/2 cells, FGF-2 and cortisol induced a histone modification pattern at the Notch4 locus mimicking that present in endothelial cells and reprogrammed Notch4 from a repressed to an active state. These results establish the molecular basis for a novel AP-1/GR-Notch4 axis in vascular endothelium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call