Abstract
Developing an effective and safe recombinant vaccine requires microbe-specific antigens combined with an adjuvant/delivery system to strengthen protective immunity. In this study, we designed and expressed a multivalent recombinant Coccidioides polypeptide antigen (rCpa1) that consists of three previously identified antigens (i.e., Ag2/Pra, Cs-Ag, and Pmp1) and five pathogen-derived peptides with high affinity for human major histocompatibility complex class II (MHC-II) molecules. The purified rCpa1 was encapsulated into four types of yeast cell wall particles containing β-glucan, mannan, and chitin in various proportions or was mixed with an oligonucleotide (ODN) containing two methylated dinucleotide CpG motifs. This multivalent antigen encapsulated into glucan-chitin particles (GCP-rCpa1) showed significantly greater reduction of fungal burden for human HLA-DR4 transgenic mice than the other adjuvant-rCpa1 formulations tested. Among the adjuvants tested, both GCPs and β-glucan particles (GPs) were capable of stimulating a mixed Th1 and Th17 response. Mice vaccinated with GCP-rCpa1 showed higher levels of interleukin 17 (IL-17) production in T-cell recall assays and earlier lung infiltration by activated Th1 and Th17 cells than GP-rCpa1-vaccinated mice. Both C57BL/6 and HLA-DR4 transgenic mice that were vaccinated with the GCP-rCpa1 vaccine showed higher survival rates than mice that received GCPs alone. Concurrently, the GCP-rCpa1 vaccine stimulated greater infiltration of the injection sites by macrophages, which engulf and process the vaccine for antigen presentation, than the GP-rCpa1 vaccine. This is the first attempt to systematically characterize the presentation of a multivalent coccidioidomycosis vaccine encapsulated with selected adjuvants that enhance the protective cellular immune response to infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.