Abstract
TmPul13, a family 13 glycoside hydrolase from Thermotoga maritima, is a four-module protein having pullulanase activity; the three N-terminal modules are of unknown function while the large C-terminal module is likely the catalytic module. Dissection of the functions of the three unknown modules revealed that the 100 amino acid module at the extreme N-terminus of TmPul13 comprises a new family of carbohydrate-binding modules (CBM) that a bioinformatic analysis shows are most frequently found in pullulanase-like sequences from bacterial pathogens. Detailed binding studies of this isolated CBM, here called TmCBM41, reveals a preference for alpha-(1,4)-linked glucans, but occasional alpha-(1,6)-linked glucose residues, such as those found in pullulan, are tolerated. UV difference, isothermal titration calorimetry, and analytical ultracentrifugation binding studies suggest that maltooligosaccharides longer than four glucose residues are able to bind two TmCBM41 molecules per oligosaccharide when sugar concentrations are below the CBM concentration. This is explained in terms of an equilibrium expression involving the formation of both a 1 to 1 sugar to CBM complex and a 1 to 2 sugar to CBM complex (i.e., a CBM dimer ligated by an oligosaccharide). The presence of an alpha-(1-6) linkage in the oligosaccharide appears to prevent this phenomenon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.