Abstract

AimsWe aimed to explore the evidence of brain microglia activation in diabetic neuropathic pain (DNP) and the effect and mechanism of glucagon-like peptide-1 receptor agonist (GLP-RA) on DNP via brain microglia. MethodsBrain microglia activation was observed in DNP rats by positron emission tomography/computed tomography. The behavior of neuropathic pain was assessed in DNP rats after intracerebroventricular administration of GLP-1RA or microglial inhibitor minocycline. RNA sequencing was performed to explore the target of GLP-1RA on brain microglia. NOD-like receptor protein 3 (NLRP3) expression in brain microglia was evaluated in mentioned-above DNP rats, and the activation of NLRP3 inflammasome was analyzed in microglia treated with GLP-1RA. ResultsMicroglia were activated in the cortex and thalamus of DNP rats. The thermal and mechanical allodynia were alleviated in DNP rats via intracerebroventricular administration of GLP-1RA or minocycline. And the activation of brain microglia was attenuated in DNP rats by intracerebroventricular administration of GLP-1RA. The expression of NLRP3 in brain microglia, which was found by RNA sequencing, was reduced in DNP rats by administration of GLP-1RA. Furthermore, GLP-1RA attenuated NLRP3 inflammasome activation in microglia triggered by LPS. ConclusionGLP-1RA could alleviate DNP, possibly mediated by the suppression of brain microglia NLRP3 inflammasome activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call