Abstract
Synergism between glucose and cAMP in the stimulation of insulin secretion has been suggested to regulate beta cells. This study assessed the importance of an interaction between glucose and cAMP in the stimulation of insulin secretion from human islet cells by investigating expression and functional activity of receptors recognising glucagon, glucagon-like peptide-1 (7-36)amide (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Expression of the glucagon, GLP-1 and GIP receptors in human islets was investigated by northern blots and reverse transcription-polymerase chain reaction analysis. Functional activity of these receptors was assessed by the effects of peptides (agonists and antagonists) on glucose-induced insulin release. Human islet cells express transcripts encoding glucagon, GLP-1 and GIP receptors. Glucose (10 mmol/l) stimulated insulin release 4.5 +/- 0.6-fold over basal (2.5 mmol/l). This glucose effect was amplified by 10 nmol/l GLP-1, GIP or glucagon. It was reduced by 51 +/- 6% in the presence of 1 micromol/l of the glucagon-receptor antagonist des-His1-[Glu9]-glucagon-amide (n = 8; p < 0.05), indicating participation of endogenously released glucagon in the process of glucose-induced insulin release. The glucagon-receptor antagonist also suppressed the potentiation of glucose-induced insulin release by addition of 10 nmol/l glucagon. These data suggest that human beta cells express functional glucagon receptors which can, similar to incretin hormone receptors, generate synergistic signals for glucose-induced insulin secretion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.