Abstract

One paradox of hormonal regulation during exercise is the maintenance of glucose homeostasis after endurance training despite a lower increase in plasma glucagon. One explanation could be that liver sensitivity to glucagon is increased by endurance training. Glucagon exerts its effect through a 62 KDa glycoprotein receptor, member of the G protein-coupled receptor. To determine whether changes with exercise in glucagon sensitivity occurred at the level of the glucagon receptor (GR), binding characteristics of hepatic glucagon receptors were ascertained in rat purified plasma membranes. Saturation kinetics indicated no difference in the dissociation constant or affinity of glucagon receptor, but a significantly higher glucagon receptor binding density in liver in endurance trained compared to untrained animals. Along with endurance training, it appears that fasting also changes GR binding characteristics. In animals fasting 24 hrs, a significant increase in glucagon receptor density was also reported. Although the exact mechanism remains unknown, there is no doubt that the liver can adapt to physiological stress through modulation of GR binding characteristics to enhance the hepatic glucose production responsiveness to glucagon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.