Abstract

The association process of glucagon receptor binding in purified rat liver plasma membranes and prolonged incubation of the hormone-receptor complex at 30°C did not result in degradation of bound labelled glucagon. In contrast, up to 95% of the non-membrane-bound labelled glucagon was degraded. The rate of spontaneous dissociation of the glucagon-receptor complex was slow, and amounted to about 0.1% per min of that bound. GTP greatly enhanced the rate of dissociation. Half the maximal dissociation of the complex was effected by 10 −5 mol/l of GTP under equilibrium binding conditions. At maximally effective concentrations of GTP, 80% of the glucagon-receptor complex was dissociated within 2 min. A microperifusion system for the perifusion of isolated plasma membranes was devised and used for the separation of labelled glucagon from the plasma membranes subsequent to a GTP-induced dissociation of the hormone-receptor complex. Rebinding of the dissociated peptide to fresh membranes showed that maximum binding ability was retained. The glucagon molecule was protected against degradation while bound to the receptor, indicating that the glucagon effector system is completely separate from the inactivating system(s) in isolated plasma membranes. Thus, the hormonal effect of glucagon could be exerted through the sequential interaction of each glucagon molecule with several receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.