Abstract

Chronic cerebral hypoperfusion (CCH) affects the aging population and especially patients with neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease. CCH is closely related to the cognitive dysfunction in these diseases. Glucagon-like peptide-2 receptor (GLP2R) mRNA and protein are highly expressed in the gut and in hippocampal neurons. This receptor is involved in the regulation of food intake and the control of energy balance and glucose homeostasis. The present study employed behavioral techniques, electrophysiology, western blotting, immunohistochemistry, quantitative real time polymerase chain reaction (qRT-PCR), and Golgi staining to investigate whether the expression of GLP2R changes after CCH and whether GLP2R is involved in cognitive impairment caused by CCH. Our findings show that CCH significantly decreased hippocampal GLP2R mRNA and protein levels. GLP2R upregulation could prevent CCH-induced cognitive impairment. It also improved the CCH-induced impairment of long-term potentiation and long-term depression. Additionally, GLP2R modulated after CCH the AKT-mTOR-p70S6K pathway in the hippocampus. Moreover, an upregulation of the GLP2R increased the neurogenesis in the dentate gyrus, neuronal activity, and density of dendritic spines and mushroom spines in hippocampal neurons. Our findings reveal the involvement of GLP2R via a modulation of the AKT-mTOR-p70S6K pathway in the mechanisms underlying CCH-induced impairments of spatial learning and memory. We suggest that the GLP2R and the AKT-mTOR-p70S6K pathway in the hippocampus are promising targets to treat cognition deficits in CCH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call