Abstract

Objective Diabetic polyneuropathy (DPN) is one of the most prevalent diabetic complications. We previously demonstrated that exendin-4 (Ex4), a glucagon-like peptide-1 receptor agonist (GLP-1RA), has beneficial effects in animal models of DPN. We hypothesized that GLP-1 signaling would protect neurons of the peripheral nervous system from oxidative insult in DPN. Here, the therapeutic potential of GLP-1RAs on DPN was investigated in depth using the cellular oxidative insult model applied to the dorsal root ganglion (DRG) neuronal cell line. Research Design and Methods Immortalized DRG neuronal 50B11 cells were cultured with and without hydrogen peroxide in the presence or absence of Ex4 or GLP-1(7-37). Cytotoxicity and viability were determined using a lactate dehydrogenase assay and MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt), respectively. Antioxidant enzyme activity was evaluated using a superoxide dismutase assay. Alteration of neuronal characteristics of 50B11 cells induced by GLP-1RAs was evaluated with immunocytochemistry utilizing antibodies for transient receptor potential vanilloid subfamily member 1, substance P, and calcitonin gene-related peptide. Cell proliferation and apoptosis were also examined by ethynyl deoxyuridine incorporation assay and APOPercentage dye, respectively. The neurite projection ratio induced by treatment with GLP-1RAs was counted. Intracellular activation of adenylate cyclase/cyclic adenosine monophosphate (cAMP) signaling was also quantified after treatment with GLP-1RAs. Results Neither Ex4 nor GLP-1(7-37) demonstrated cytotoxicity in the cells. An MTS assay revealed that GLP-1RAs amended impaired cell viability induced by oxidative insult in 50B11 cells. GLP-1RAs activated superoxide dismutase. GLP-1RAs induced no alteration of the distribution pattern in neuronal markers. Ex4 rescued the cells from oxidative insult-induced apoptosis. GLP-1RAs suppressed proliferation and promoted neurite projections. No GLP-1RAs induced an accumulation of cAMP. Conclusions Our findings indicate that GLP-1RAs have neuroprotective potential which is achieved by their direct actions on DRG neurons. Beneficial effects of GLP-1RAs on DPN could be related to these direct actions on DRG neurons.

Highlights

  • Among many significant diabetic complications, diabetic polyneuropathy (DPN) is one of the most prevalent complications and causes nontraumatic amputations of lower limbs [1]

  • No Cytotoxicity Was Introduced by glucagon-like peptide-1 receptor agonist (GLP-1RA) in dorsal root ganglion (DRG) Neurons

  • We investigated the neuroprotective effects of GLP-1RAs in the DRG neuronal cell line

Read more

Summary

Introduction

Among many significant diabetic complications, diabetic polyneuropathy (DPN) is one of the most prevalent complications and causes nontraumatic amputations of lower limbs [1]. We investigated the beneficial effects of glucagon-like peptide-1 (GLP-1) signaling in neurons of the PNS using an in vitro model of DPN. GLP-1, an incretin hormone which lowers blood glucose levels through enhancement of glucose-stimulated insulin secretion (GSIS), has pleiotropic effects. It is known that GLP-1 activates adenylate cyclase and employs cAMP as a second messenger to enhance GSIS in pancreatic beta cells [8, 9]. It has been reported that activation of GLP-1 signaling modified cell fate and differentiation in pancreatic beta cells [17, 18]. GLP-1 signaling induced in vivo reprogramming of pancreatic exocrine cells into beta cells [17] and in vitro differentiation of human embryonic stem cells into insulin-producing cells [19]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call