Abstract

Oxyntomodulin (OXM), glucagon, and glucagon-like peptide-1 (GLP-1), peptide hormones derived from the glucagon gene, play an important role in glucose homeostasis. The insulinotropic action of these three homologous peptides has been well documented in monogastric animals. However, information on the relationships among these peptides in insulin-releasing action, specifically in ruminants, is still insufficient. In this regard, we carried out two experiments in cattle. In experiment 1, effects of glucagon and GLP-1 on plasma insulin and glucose were investigated in 10-mo-old Holstein steers (347 ± 8 kg, n = 8) under normoglycemic conditions. Peptides were administered intravenously at dose rates of 0.12, 0.25, 0.50, and 1.25 nmol/kg body weight (BW). In experiment 2, the relationships among OXM, glucagon, and GLP-1 in the insulinotropic and glucoregulatory actions were elucidated in 3-mo-old Holstein steers (94 ± 2 kg, n = 8) using agonist-antagonist strategy. In agonist strategy, these three peptides were administered alone or coadministered at dose rates of 10 μg of OXM/kg BW, 4 μg of glucagon/kg BW, and 2 μg of GLP-1/kg BW. In antagonist strategy, 2 μg of each peptide was administered alone or in combination with 10 μg of [des His1, des Phe6, Glu9] glucagon amide (a glucagon receptor antagonist) or exendin-4 (5-39) amide (a GLP-1 receptor antagonist). Our results showed that OXM, glucagon, and GLP-1 had insulinotropic actions in ruminants under normoglycemic conditions. Our results also showed that the insulin-releasing effects of OXM and glucagon were mediated through both GLP-1 receptors (GLP-1R) and glucagon receptors. These insulinotropic effects of OXM and glucagon through GLP-1R were inhibited by GLP-1. Our findings expand the relationships among OXM, glucagon, and GLP-1 in the insulinotropic and glucoregulatory actions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call