Abstract

The incretin glucagon-like peptide-1 (GLP-1) elicits direct favorable effects on the cardiovascular system. This study aimed to evaluate the acute effects of GLP-1 on improving aortic endothelial dysfunction in diabetic mice. Additionally, we examined whether GLP-1 elucidated the underlying mechanisms. Using the diabetic mouse models induced by nicotinamide and streptozotocin, we investigated the functional changes in the aorta caused by GLP-1. Organ baths were performed for vascular reactivity in isolated aortic rings, and western blotting was used for protein analysis. The diabetic aortas showed enhanced GLP-1-induced relaxation response and nitric oxide (NO) production. However, the pretreatment of GLP-1 did not significantly change the endothelial-dependent relaxation response to acetylcholine and -independent relaxation response to sodium nitroprusside. On the other hand, the GLP-1-induced relaxation response and NO production were abolished by the endothelial NO synthase inhibitor, GLP-1 receptor antagonist, Akt inhibitor, and AMP-activated protein kinase (AMPK) inhibitor. Finally, in diabetic mice, considerable increases in phosphorylation of Akt and AMPK were found in aortas stimulated with GLP-1, both of which were decreased by pretreatment with the AMPK inhibitor. GLP-1 significantly enhanced endothelial-dependent relaxation in diabetic aortas. The effect may be mediated through activation of the AMPK/Akt pathway via a GLP-1 receptor-dependent mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call