Abstract

Abstract Funding Acknowledgements Type of funding sources: Foundation. Main funding source(s): Novo Nordisk Foundation Synergy program Novo Nordisk Foundation Center for Basic Metabolic Research Background Treatment with glucagon-like peptide-1 receptor agonists (GLP-1 RAs) in patients with type 2 diabetes not only reduces hyperglycaemia, but also improves cardiovascular outcomes. However, GLP-1 RA treatment also increases heart rate: an apparent paradox. Purpose Whether the heart rate increase is a direct effect, and whether GLP-1 affects other aspects of cardiac electrophysiology, remain unclear. To answer these questions we investigated the effect of GLP-1 infusion on cardiac electrophysiology in vivo and ex vivo in pigs and pig hearts, respectively, during sinus rhythm and pacing. Methods Anaesthetised pigs (n = 8) received infusions of GLP-1 (10 pmol/kg/min). Electrocardiogram, atrial monophasic action potentials and atrial conduction velocity data were collected and atrial and ventricular effective refractory periods (ERP) were measured. For the ex vivo studies, pig hearts (n = 7) were excised, retrogradely perfused and exposed to consecutive bolus perfusions of 2 and 4 nmol GLP-1, 100 nmol of the GLP-1 receptor antagonist exendin-9-39 and a final 4 nmol bolus of GLP-1. The same electrophysiological parameters were measured. Results In anaesthetised pigs, GLP-1 increased heart rate, cardiac output and diastolic pressure, while systemic vascular resistance was decreased. Infusion of GLP-1 decreased PQ interval in sinus rhythm (P = 0.019, n = 8) and during atrial pacing (P = 0.027, n = 6) with 8 ± 3 % and 12 ± 3 %, respectively. Additionally, GLP-1 decreased atrial ERP at all pacing cycle lengths (P = 0.04, n = 7), while ventricular ERP was unaffected (P = 0.29, n = 7). In the isolated perfused heart, GLP-1 increased heart rate with 13 ± 2 bpm (P = 0.001, n = 7). This increase in heart rate was completely abolished by pre-administration of exendin-9-39. Atrial ERP shortened after GLP-1 perfusion (P = 0.01, n = 7) comparable to the in vivo studies, with an average decrease of 11 ± 2 %. This effect was also abolished by exendin-9-39. Conclusion GLP-1 increases heart rate through activation of the GLP-1 receptor in the isolated perfused heart, suggesting a direct effect of GLP-1 rather than activation through the central nervous system. Additionally, GLP-1 affects atrial electrophysiology, but not ventricular electrophysiology, in vivo and ex vivo independent of the increase in heart rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.