Abstract
This study was done to determine glucagon's effect on protein biliary excretion in anesthetized, bile duct-cannulated guinea pigs. Glucagon (1.4 nmol.min-1.kg-1) induced choleresis and increased protein biliary concentration from 0.12 +/- 0.04 to 0.20 +/- 0.6 mg/ml and protein output from 22.8 +/- 3.8 to 54.5 +/- 16.1 micrograms.kg-1.min-1. Protein biliary excretion increased during the first 10 min of glucagon infusion and progressively declined thereafter. Biochemical analysis of biliary protein revealed that the increase could be accounted for primarily by an increase in the lysosomal enzymes acid phosphatase and beta-glucuronidase. Biliary excretion of the canalicular membrane enzymes 5'-nucleotidase and alkaline phosphatase only modestly increased, whereas that of [14C]sucrose, a marker of paracellular fluid transport, was unaffected. On the other hand, glucagon enhanced biliary entry of horseradish peroxidase in a fashion similar to that observed with total endogenous protein. These effects were mediated by the adenosine 3',5'-cyclic monophosphate (cAMP) system, since infusion of dibutyryl-cAMP at 0.5 mumol.kg-1.min-1 increased bile flow and biliary protein excretion in a time-dependent manner, as observed with glucagon. Glucagon's failure to sustain enhanced protein biliary output was not due to declining hepatic concentrations of cAMP or to depletion of hepatocellular lysosomal enzymes. These studies provide evidence that glucagon stimulates biliary excretion of protein in guinea pigs that can be accounted for by biliary discharge of enzyme originating from the canalicular membrane and, primarily, from the lysosomal compartment. Although the precise mechanism(s) underlying these effects remains to be elucidated, it is suggested that the increase in canalicular membrane enzyme excretion is due to glucagon's effect on exocytosis.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Gastrointestinal and Liver Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.