Abstract

One of the main disadvantages of wood is hygroscopicity resulting from its polar character. The sorption–desorption of water causes unwanted swelling and shrinkage in wood. Thermal modification substantially reduces this inconvenient feature. Unfortunately, the same chemical changes that reduce water sorption alter the polar character of the material and result in poorer wetting of thermally treated wood by waterborne adhesives. Gluability of thermally modified beech (Fagus silvatica L.) and birch (Betula pubescens Ehrh.) wood with two commercial amino resins, melamine–urea–formaldehyde (MUF) and melamine–formaldehyde (MF), and a two-component polyurethane (PUR) adhesive was investigated. Both wood species were modified according to two temperature regimes: 160°C and 190°C. Shear strengths of the joints were then determined according to EN 205:2003 standard. The results showed that thermally modified beech and birch wood can be effectively glued not only with commercially available PUR adhesives, but also with aqueous MF and MUF resins. The resultant shear strengths of the joints were limited by the strength of the thermally modified substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call