Abstract
The arginine vasopressin (AVP) gene was sequenced in a pedigree with familial central diabetes insipidus (DI). When polymerase chain reaction-amplified DNAs from affected subjects were subjected to polyacrylamide gel electrophoresis, fragments including exon 2 displayed two additional, slower migrating bands. These extra bands represented DNA heteroduplexes, indicating that there was a deletion or insertion mutation in exon 2. As the region with such a mutation was identified by direct sequence analysis, polymerase chain reaction-amplified fragments including the region were subcloned and sequenced. A 3-basepair deletion (AGG) out of two consecutive AGG sequences (nucleotides 1824-1829) was identified in one of two alleles. The cosegregation of the mutation with the DI phenotype in the family was confirmed by restriction enzyme analyses. This mutation should yield an abnormal AVP precursor lacking Glu47 in its neurophysin-II (NP) moiety. Since Glu47 is essential for NP molecules to form a salt bridge with AVP, it is very likely that the function of NP as a carrier protein for AVP would be impaired. We suggest that AVP would undergo accelerated proteolytic degradation, and this mechanism would be involved in the pathogenesis of DI in this pedigree.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Clinical Endocrinology & Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.