Abstract

The whole-cell patch-clamp method was used to examine the effect of glucagon-like peptide I (GLP-I)(7-36) amide on the activation process of L-type Ca2+ channels of rat pancreatic beta-cells. After depolarization, GLP-I (1-100 nmol/l) caused action potentials in cells exposed to a glucose-free solution for 10 min. The percentage of cells producing action potential depended on the concentration of GLP-I. In some cells, GLP-I caused action potentials without the prior depolarization of the membrane. In cells exposed to the glucose-free solution for longer than 30 min, or in cells that were deprived of ATP by a means of the conventional whole-cell configuration, GLP-I (20 nmol/l) did not cause the electrical excitation. Application of GLP-I augmented the maximum Ba2+ current (IBa) through L-type Ca2+ channels and shifted the current voltage curve to the left. Values of changes in the maximum IBa depended on GLP-I concentration. Application of dibutyryl cAMP (dbcAMP, 1 mmol/l) also augmented IBa. In cells pretreated with Rp-cAMP, dbcAMP did not change the magnitude of IBa. Also in cells pretreated with Rp-cAMP, GLP-I failed to augment IBa. These results suggest that in pancreatic beta-cells, GLP-I, by a cAMP-dependent mechanism, increases opening of L-type Ca2+ channels. cAMP-dependent augmentation of Ca2+ entry as well as cAMP production itself by GLP-I plays a crucial role in controlling insulin secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.