Abstract

Control of estrous cycle and reproductive capacity involves a large number of central and peripheral factors, integrating numerous nutritional and metabolic signals. Here we show that glucagon-like peptide-1 (GLP-1), a peptide with anorexigenic and insulinotropic actions, and the GLP-1 receptor agonist Exendin-4 (Ex4) exert a regulatory influence on the gonadal axis, in both adult and prepubertal female rats. In adult rats, Glp-1 receptor expression varies during the estrous cycle at the hypothalamus, pituitary, and ovary. Furthermore, acute treatment with GLP-1 in the morning proestrus doubled the amplitude of the preovulatory LH surge, as well as influencing estradiol and progesterone levels along the estrous cycle. These changes provoked an important increase in the number of Graafian follicles and corpora lutea, as well as in the litter size. Conversely, Ex4 diminished the levels of LH, later producing a partial blockade at the preovulatory surge, yet not affecting either the number of mature follicles or corpora lutea. Chronic administration of low doses of GLP-1 to prepubertal rats synchronized vaginal opening and increased LH levels on the 35th day of life, yet at these doses it did not modify their body weight, food intake, or ovarian and uterine weight. By contrast, chronic exposure to Ex4 produced a significant reduction in ovarian and uterine weight, and serum LH, and the animals treated chronically with Ex4 showed no vaginal opening in the period studied. Overall, our results demonstrate that GLP-1 and Ex4 act on the gonadal axis, involving the hypothalamic kisspeptin system, to influence reproductive efficiency in female rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call