Abstract

Type 2 diabetes mellitus (T2DM) is a major risk factor for cardiovascular disease. The presence of concomitant hypertension in diabetics is a major driver of excess cardiovascular risk. Glucagon-like peptide-1 receptor agonists (GLP-1a) act on numerous pathways that intersect glycemic, weight, and blood pressure (BP) control. BP-lowering effects have been observed in mouse models of hypertension with a variety of GLP-1a. Acute administration of GLP-1a in humans has been shown to no effects and sometimes increased BP in humans. Chronic administration of GLP-1a, however, reduces clinic systolic BP (≈2mmHg) at least when evaluated as a secondary end point in glycemia-lowering studies while simultaneously increasing heart rate. BP lowering has not been consistently observed in two recent double-blind controlled clinical trials evaluating ambulatory BP as the primary end point. While a number of mechanisms including vascular, myocardial, renal, and central nervous system pathways have been suggested in animal studies, these mechanistic pathways have not been sufficiently detailed in humans and it is unclear if the same pathways are operational. Further studies need to be conducted to unravel the full spectrum of effects of this drug class. An understanding of their effects on BP may help provide an explanation for the ability of GLP-1a to influence cardiovascular (CV) events in ongoing event-driven CV trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.