Abstract

The glucoincretin hormone glucagon-like peptide-1 (GLP-1) augments glucose-stimulated insulin secretion and is in use as an effective treatment for diabetes. However, after its secretion from the intestine, the insulinotropic GLP-1 (7-36) amide hormone is rapidly inactivated by enzymatic cleavage by the diaminopeptidyl peptidase-4 giving rise to GLP-1 (9-36) amide. Inasmuch as most of the circulating GLP-1 is in the form of the metabolite GLP-1 (9-36) amide it has been suggested that it has insulin-like actions on peripheral insulin-sensitive tissues. In earlier studies, infusions of GLP-1 (9-36) amide in obese insulin-resistant subjects showed a marked suppression of hepatic glucose production. However, it remained uncertain whether the effects on glucose production were due to direct effects on hepatocytes, involved central or portal vein-mediated actions, or were mediated by insulin secretion. Here we show that GLP-1 (9-36) amide directly suppresses glucose production in isolated mouse hepatocytes ex vivo independent of the GLP-1 receptor. These findings support direct insulinomimetic actions of the GLP-1 metabolite on gluconeogenesis in hepatocytes that are independent of insulin action and the GLP-1 receptor, and suggest that GLP-1 (9-36) amide-based peptides might present a novel therapy for the treatment of excessive hepatic glucose production in individuals with insulin-resistant diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.