Abstract
We study the community detection problem by embedding the nodes of a graph into a $n$ -dimensional space such that similar nodes remain close in their representations. There are many state-of-the-art methods, like node2vec and DeepWalk to compute node embeddings with the use of second order random walks. These techniques borrow methods like the Skip-Gram model, used in the domain of Natural Language Processing (NLP) to compute word embeddings. This paper explores the idea of porting the GloVe (Global Vectors for Word Representation) model, a popular technique for word embeddings, to a new method called GloVeNoR, to compute node embeddings in a graph, and creating a corpus with the use of second order random walks. We evaluate the model's quality by comparing it against node2vec and DeepWalk on the problem of community detection on five different data sets. We observe that GloVeNoR discovers similar or better communities than the other existing models on all the datasets based on the modularity score.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.