Abstract

Most known two-dimensional magnets exhibit a high sensitivity to air, making direct characterization of their domain textures technically challenging. Herein, we report on the construction and performance of a glovebox-assisted magnetic force microscope (MFM) operating in a cryogen-free magnet, realizing imaging of the intrinsic magnetic structure of water and oxygen-sensitive materials. It features a compact tubular probe for a 50 mm-diameter variable temperature insert installed in a 12T cryogen-free magnet. A detachable sealing chamber can be electrically connected to the tail of the probe, and its pump port can be opened and closed by a vacuum manipulator located on the top of the probe. This sealing chamber enables sample loading and positioning in the glove box and MFM transfer to the magnet maintained in an inert gas atmosphere (in this case, argon and helium gas). The performance of the MFM is demonstrated by directly imaging the surface (using no buffer layer, such as h-BN) of very air-sensitive van der Waals magnetic material chromium triiodide (CrI3) samples at low temperatures as low as 5K and high magnetic fields up to 11.9T. The system's adaptability permits replacing the MFM unit with a scanning tunneling microscope unit, enabling high-resolution atomic imaging of air-sensitive surface samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call