Abstract
Continuous sign language recognition (CSLR) is to recognize the glosses in a sign language video. Enhancing the generalization ability of CSLR's visual feature extractor is a worthy area of investigation. In this paper, we model glosses as priors that help to learn more generalizable visual features. Specifically, the signer-invariant gloss feature is extracted by a pre-trained gloss BERT model. Then we design a gloss prior guidance network (GPGN). It contains a novel parallel densely-connected temporal feature extraction (PDC-TFE) module for multi-resolution visual feature extraction. The PDC-TFE captures the complex temporal patterns of the glosses. The pre-trained gloss feature guides the visual feature learning through a cross-modality matching loss. We propose to formulate the cross-modality feature matching into a regularized optimal transport problem, it can be efficiently solved by a variant of the Sinkhorn algorithm. The GPGN parameters are learned by optimizing a weighted sum of the cross-modality matching loss and CTC loss. The experiment results on German and Chinese sign language benchmarks demonstrate that the proposed GPGN achieves competitive performance. The ablation study verifies the effectiveness of several critical components of the GPGN. Furthermore, the proposed pre-trained gloss BERT model and cross-modality matching can be seamlessly integrated into other RGB-cue-based CSLR methods as plug-and-play formulations to enhance the generalization ability of the visual feature extractor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.