Abstract

K2 is a new generation of GLONASS satellites that provides code division multiple access (CDMA) signals in the L1, L2 and L3 frequency bands in addition to legacy L1 and L2 signals based on frequency division multiple access (FDMA) modulation. The first GLONASS-K2 satellite was launched in August 2023 and started signal transmission in early September 2023. Based on measurements with a 30-m high-gain antenna, spectral characteristics of the various signal components are described and relative power levels are identified. A 3 dB (L1) to 4 dB (L2) higher total power is determined for the CDMA signal compared to the legacy FDMA signal and an equal power of the open service and secured CDMA signal components is found. The ranging code of the L2 channel for service information, which has not been publicly disclosed so far, is identified as a Gold code sequence consistent with the data channel of the L1 open service CDMA signal. The high-gain antenna measurements are complemented by tracking data from terrestrial receivers that enable a first assessment of user performance. An up to 50% improvement in terms of noise and multipath performance is demonstrated for the new L1 and L2 CDMA signals in comparison with their legacy counterpart, but no obvious differences between the different binary phase-shift keying and binary offset carrier modulations of the data and pilot components of these signals could be identified for the test stations. Triple-frequency carrier phase observations from L1, L2, and L3 CDMA signals exhibit good consistency at the noise and multipath level, except for small variations that can be attributed to slightly different antenna phase patterns on the individual frequencies. Overall, the new CDMA signals are expected to notably improve and facilitate precise point positioning applications once fully deployed across the GLONASS constellation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.