Abstract

To develop a formula for correcting slope-intercept plasma iohexol clearance in cats and to compare clearance of total iohexol (TIox), endo-iohexol (EnIox), and exo-iohexol (ExIox). 20 client-owned, healthy adult and geriatric cats. Plasma clearance of TIox was determined via multisample and slope-intercept methods. A multisample method was used to determine clearance for EnIox and ExIox. A second-order polynomial correction factor was derived by performing regression analysis of the multisample data with the slope-intercept data and forcing the regression line though the origin. Clearance corrected by use of the derived formula was compared with clearance corrected by use of Brochner-Mortensen human and Heiene canine formulae. Statistical testing was applied, and Bland-Altman plots were created to assess the degree of agreement between TIox, EnIox, and ExIox clearance. Mean ± SD iohexol clearance estimated via multisample and corrected slope-intercept methods was 2.16 ± 0.35 mL/min/kg and 2.14 ± 0.34 mL/min/kg, respectively. The derived feline correction formula was Cl(corrected) = (1.036 × Cl(uncorrected)) - (0.062 × Cl(uncorrected)(2)), in which Cl represents clearance. Results obtained by use of the 2 methods were in excellent agreement. Clearance corrected by use of the Heiene formula had a linear relationship with clearance corrected by use of the feline formula; however, the relationship of the feline formula with the Brochner-Mortensen formula was nonlinear. Agreement between TIox, EnIox, and ExIox clearance was excellent. The derived feline correction formula applied to slope-intercept plasma iohexol clearance accurately predicted multisample clearance in cats. Use of this technique offers an important advantage by reducing stress to cats associated with repeated blood sample collection and decreasing the costs of analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.