Abstract

The globus pallidus externus (GP) is a nucleus of the basal ganglia (BG), containing GABAergic projection neurons that arborize widely throughout the BG, thalamus and cortex. Ongoing work seeks to map axonal projection patterns from GP cell types, as defined by their electrophysiological and molecular properties. Here we use transgenic mice and recombinant viruses to characterize parvalbumin expressing (PV+) GP neurons within the BG circuit. We confirm that PV+ neurons 1) make up ~40% of the GP neurons 2) exhibit fast-firing spontaneous activity and 3) provide the major axonal arborization to the STN and substantia nigra reticulata/compacta (SNr/c). PV+ neurons also innervate the striatum. Retrograde labeling identifies ~17% of pallidostriatal neurons as PV+, at least a subset of which also innervate the STN and SNr. Optogenetic experiments in acute brain slices demonstrate that the PV+ pallidostriatal axons make potent inhibitory synapses on low threshold spiking (LTS) and fast-spiking interneurons (FS) in the striatum, but rarely on spiny projection neurons (SPNs). Thus PV+ GP neurons are synaptically positioned to directly coordinate activity between BG input nuclei, the striatum and STN, and thalamic-output from the SNr.

Highlights

  • The basal ganglia (BG) are interconnected forebrain nuclei necessary for selecting and shaping motor and cognitive behaviors

  • This subdivision is the basis for the prominent model explaining how the BG control cortical feedback and behavior[5,6]: direct pathway spiny projection neurons (SPNs) promote actions by disinhibiting the thalamus and cortex, whereas indirect pathway SPNs SPNs dampen or sculpt actions by indirectly disinhibiting the SNr and potentiating BG inhibitory outputs

  • We sought to understand how PV+ globus pallidus externus (GP) neurons fit into a cell-type based model of BG circuits, using transgenic mice and recombinant viruses to selectively label and light-activate this neuronal population

Read more

Summary

Introduction

The basal ganglia (BG) are interconnected forebrain nuclei necessary for selecting and shaping motor and cognitive behaviors. The diversity and function of BG cell types is best understood in the striatum, which contains spiny projection neurons (SPNs) and a handful of distinct interneuron types[1]. Based on axonal projections[2], electrophysiological properties[3] and dopamine receptor expression[4], SPNs fall into two major categories. This subdivision is the basis for the prominent model explaining how the BG control cortical feedback and behavior[5,6]: direct pathway SPNs (dSPNs) promote actions by disinhibiting the thalamus and cortex, whereas indirect pathway SPNs SPNs (iSPNs) dampen or sculpt actions by indirectly disinhibiting the SNr and potentiating BG inhibitory outputs.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.